Rutgers University: Algebra Written Qualifying Exam

 August 2017: Problem 3 SolutionExercise. List, up to isomorphism, all finite abelian groups G such that the order of every element of G divides 55 , and the number n_{55} of elements of order exactly 55 satisfies

$$
10^{2} \leq n_{55} \leq 10^{3}
$$

You must prove that your list is accurate.

Solution.

G can be written as direct sums of \mathbb{Z}_{5} and \mathbb{Z}_{11}.
If $\mathbb{Z}_{p^{k}}$ is in the direct sum G will have an element of order $p^{k} \nmid 55$.
$\mathbb{Z}_{5} \oplus \mathbb{Z}_{11}$ is obviously too small.
$\mathbb{Z}_{5} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{11}:$
(a, b, c) has order 55 IFF either a or b is nonzero AND c is nonzero.

$$
n_{55}=(4)(5)(10)+(1)(4)(10)=240
$$

$\mathbb{Z}_{5} \oplus \mathbb{Z}_{11} \oplus \mathbb{Z}_{11}:$
Let $(a, b, c) \in \mathbb{Z}_{5} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{11}$ s.t. $a \neq 0$ and $b \neq 0$ or $c \neq 0$

$$
n_{55}=(4)(10)(11)+(4)(1)(10)=480
$$

$\mathbb{Z}_{5} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{11}$: (note: this is the next smallest direct sum of \mathbb{Z}_{5} and Z_{11})
Let $(a, b, c, d) \in \mathbb{Z}_{5} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{11}$ such that $a \neq 0$ or $b \neq 0$ or $c \neq 0$ and $d \neq 0$

$$
(4)(5)(5)(1)+(1)(4)(5)(10)+(1)(1)(4)(1)>1000 \quad X
$$

\Longrightarrow All remaining direct sums of \mathbb{Z}_{5} and \mathbb{Z}_{11} will be too large.
$\mathbb{Z}_{5} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{11}$
$\mathbb{Z}_{5} \oplus \mathbb{Z}_{11} \oplus \mathbb{Z}_{11}$

