Rutgers University: Algebra Written Qualifying Exam August 2017: Problem 3 Solution

Exercise. List, up to isomorphism, all finite abelian groups G such that the order of every element of G divides 55, and the number n_{55} of elements of order exactly 55 satisfies

$$10^2 \le n_{55} \le 10^3.$$

You must prove that your list is accurate.

Solution. G can be written as direct sums of \mathbb{Z}_5 and \mathbb{Z}_{11} . If \mathbb{Z}_{p^k} is in the direct sum G will have an element of order $p^k \nmid 55$. $\mathbb{Z}_5 \oplus \mathbb{Z}_{11}$ is obviously too small. $\mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_{11}$: (a, b, c) has order 55 IFF either a or b is nonzero AND c is nonzero. $n_{55} = (4)(5)(10) + (1)(4)(10) = 240$ \checkmark $\mathbb{Z}_5 \oplus \mathbb{Z}_{11} \oplus \mathbb{Z}_{11}$: Let $(a, b, c) \in \mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_{11}$ s.t. $a \neq 0$ and $b \neq 0$ or $c \neq 0$ $n_{55} = (4)(10)(11) + (4)(1)(10) = 480$ \checkmark $\mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_{11}$: (note: this is the next smallest direct sum of \mathbb{Z}_5 and Z_{11}) Let $(a, b, c, d) \in \mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_{11}$ such that $a \neq 0$ or $b \neq 0$ or $c \neq 0$ and $d \neq 0$ (4)(5)(5)(1) + (1)(4)(5)(10) + (1)(1)(4)(1) > 1000Х \implies All remaining direct sums of \mathbb{Z}_5 and \mathbb{Z}_{11} will be too large. $\mathbb{Z}_5 \oplus \mathbb{Z}_{11} \oplus \mathbb{Z}_{11}$ $\mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_{11}$ and